PHYS 705: Classical Mechanics

Examples: Lagrange Equations
and Constraints




Hoop Rolling Down an Incline Plane

« an object rolls because of friction but static
friction does no work

» this is different from our previous case with a

disk rolling on a 2D plane. This has 1 less dof

Pick the coordinates x,6 as shown. The constraint eq (rolling without

slipping)is: x— RO =0  We will solve this problem in two ways:

#1: The problem really has one “proper” generalized coordinate x and we will
explicitly use the constraint equation to eliminate @ from our analysis. The EOM

is simpler (1D) but we can’t get an expression for the constraint force.



Hoop Rolling Down an Incline Plane

T:Em)'c +515’2 I(hoop) = mR*

T = mx’ applying the constraint: RO = x

Now, pick U=0 to be at where the hoop is at the bottom of the incline plane,

we then have,
U=mg(l—x)sing
So,
L=mx"—mg(l —x)sin ¢

Lagrange Equation gives, .
srange bq 5 (Correct acceleration for a

gsin g
2

hoop rolling down an

2mx—mgsing=0 — Xx=

incline plane)



Hoop Rolling Down an Incline Plane

In this case, we need to go back to Newtonian mechanics to

get the constraint force:

The constraint force is the static friction F, needed

to keep the hoop rolling without slipping.

Newton 2% law gives, mgsing—F, =mx — F =mgsing—mx

Plug in our result for X and we get,

mgsing  mgsing

F =mgosing— _
- =mgsing 2 2 ¢ 2




Hoop Rolling Down an Incline Plane

#2: Now without explicitly eliminating one of
the coordinates using the constraint equation,
we will use Lagrange Equation with Lagrange

multipliers to get both the EOM and the

magnitude of the constraint force.

Using both coordinates : x and &

We have one holonomic constraint g (x, 67) =Xx— RO =0 and we will

have one Lagrange multiplier A.

The relevant terms to be included in the Lagrange equation are:

/Ia—g =1 (forx eq) and la—g =—AR (for 0 eq)
Ox 06



Hoop Rolling Down an Incline Plane

Tzlm)'c2 +lmR2632 1 1 :
2 2 == L=—mx"+—mR’0° —mg(l-x)sin ¢
U=mg(l—x)sing 2 2

The EOM are:
x| i(a_Lj_a_L_,la_gzo 0| d(aL,j_aL_,la_g:O
dt\ox ) Ox ox dt\o6) 06 06
mR*0 = —AR
mx—mgsing=A4 (1) —-mRO =4 (2)

We have three unknowns: x,#, and A to be solved here.

Together with the constraint equation | x— R =0 (3) | these system of

equations can be solved. (Note: Constraint Eq is applied AFTER EOM is obtained! )



Hoop Rolling Down an Incline Plane

Combining Eqs (1) and (2) by eliminating A, we have,
m¥ —mg sin ¢ = —mRO
Now, applying the constraint using Eq (3), we have X = RO

Substituting this into the equation above, we have,
mxX —mg sin ¢ = —mx

).C.:gsmqﬁ
2

(same EOM for x as previously)

Now, we can substitute this back into Eq (1) to solve for A,

mg sin @
2

mg sin @

/I:mjc'—mgsin¢: —mgsin¢:_



Hoop Rolling Down an Incline Plane

The magnitude of the force of constraint corresponding to the x-EOM
is given by:

mg sin @

0, ==

:‘gag
ox

By the way, we can also get the EOM for the 6 variable,
. mg sin
R = 4= "ESMP

§_8 sin ¢
2R
Notice that there is another force of constraint (the normal force : F,, = mg cos ¢).

We could get that out by introducing another “improper” coordinate y that permits

motion normal to the incline plane and imposing the constraint y=o0.



Mass Rolling off from a Hemispheric Surface

Problem: A point mass sits on top of a smooth
fixed hemisphere with radius a. Find the force

a 2 of constraint and the angle at which it flies off

U=0

the sphere.

Use coordinates: 7 and 6 and constraint: g(r,0)=r—a =0

1 , m

T:Emv :—('2+r292) note: v = /'t + r60 Za—gz/l
or
U =mgrcos6
o hE
L:T—U:E('2+r292)—mgrcosﬁ 00




L= %(fz +r292)—mgrcosé?

Mass Rolling off from a Hemispheric Surface

dodfo) o e, o S(Z)% %,
dat\or) or  or dat\od) o060 00
. d : ,
%(mf)—mr&z +mgcosf@—-A=0 E(m’”zg)—mg’”smgzo
mi —mr0* + mgcos@=1 (1) mr’0 + 2mri6 —mgrsin @ = 0

r@+2r0—gsinf=0 (2)

Inserting constraint: ¥ =a and 7 =7 =0 , we have

—mab* +mgcos@=1 (1) ab - gsinf =0
6=5sin0 (29
a

NOTE: To find force of constraint, insert constraint conditions AFTER you have
gotten the E-L equation (with the multiplier) already.



Mass Rolling off from a Hemispheric Surface

Notethat -(67) =200 5~Eno |
dt

a

Substituting g from Eq (2°) into the above equation, we have,

2y ] d(cosd
&) _ 20(§sin6’) 28 o - 28 d(c0s0)
dt a a a dt

Integrating both sides, we arrive at the EOM for 6,

0% = —2—gcos 0+ C <— Cisanintegration constant. Assuming
¢ initial condition with §(0) = 8(0) = 0, we
6* =28 (1-cos 0
=—=(1-cos0) have C=2g/a

a



Mass Rolling off from a Hemispheric Surface

(//[—maé.’z +mgcos@=1 (1 ')]
Plugging the last expression into Eq (1°), we have

—m/{(z—g(l—cosﬁ)j+mgcos«9:/l

A

—2mg +2mgcos@+mgcosfd =1

|:> A =mg(3cosf—2) (This gives the mag of the constraint force.)

The particle flies off when the constraint force = 0. By setting 4 =0, we have

the condition,
mg((3cosd —2)=0
6, =cos™' (2/3) =482’



