
PHYS 705: Classical Mechanics
Examples: Lagrange Equations 
and Constraints
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Hoop Rolling Down an Incline Plane

• an object rolls because of friction but static

friction does no work

• this is different from our previous case with a 

disk rolling on a 2D plane.  This has 1 less dof

Pick the coordinates            as shown.  The constraint eq (rolling without 

slipping) is: 

,x 
We will solve this problem in two ways:

R


x

f

Note: 

0x R 

#1:  The problem really has one “proper” generalized coordinate x and we will 

explicitly use the constraint equation to eliminate  from our analysis.  The  EOM 

is simpler (1D) but we can’t get an expression for the constraint force.
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Hoop Rolling Down an Incline Plane

Now, pick U=0 to be at where the hoop is at the bottom of the incline plane , 

we then have,

2 2 21 1
( )

2 2
T mx I I hoop mR  

So, 

2

22 21 1

2 2

applying the constraint: 

T mx m

T mx x

R

R





 

 



 



R


x

f

m

l

( )sinU mg l x f 

2 ( )sinL mx mg l x f  

Lagrange Equation gives,

sin
2 sin 0

2

g
mx mg x

ff    
(Correct acceleration for a 

hoop rolling down an 

incline plane)
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Plug in our result for      and we get,

Hoop Rolling Down an Incline Plane

In this case, we need to go back to Newtonian mechanics to 

get the constraint force:

Newton 2nd law gives, sin sinc cmg F mx F mg mxf f     

x

The constraint force is the static friction Fc needed 

to keep the hoop rolling without slipping.

sin sin
sin

2 2c

mg mg
F mg

f ff  

Fc
f

x

f

y

ˆsinmg fx

sin
ˆ

2c

mg f
 F x
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We have one holonomic constraint and we will 

have one Lagrange multiplier l.

Hoop Rolling Down an Incline Plane

Using both coordinates :  and x 

 , 0g x x R   

(for  eq)
g

x
x

l l




#2:  Now without explicitly eliminating one of 

the coordinates using the constraint equation, 

we will use Lagrange Equation with Lagrange 

multipliers to get both the EOM and the 

magnitude of the constraint force.

R


x

f

m

l

The relevant terms to be included in the Lagrange equation are:

and (for  eq)
g

Rl l 



 


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Together with the constraint equation                                     these system  of 

equations can be solved. (Note: Constraint Eq is applied AFTER EOM is obtained! )

Hoop Rolling Down an Incline Plane

The EOM are:

x 0

sin (1)

d L L g

dt x x x

mx mg

l

f l

          

 





We have three unknowns:                         to be solved here., ,  and x  l

2 2 21 1

2 2
( )sin

T mx mR

U mg l x



f

 

 


2 2 21 1

( )sin
2 2

L mx mR mg l x f   



2

0

(2)

d L L g

dt

mR R

mR

l
  

 l

 l

          
 

 





0 (3)x R 
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sin

sin

2

mx mg mx

g
x

f
f

  



 



Now, we can substitute this back into Eq (1) to solve for l, 

Hoop Rolling Down an Incline Plane

Now, applying the constraint using Eq (3), we have  

sinmx mg mRf    

Combining Eqs (1) and (2) by eliminating l, we have,

x R 

Substituting this into the equation above, we have,

(same EOM for x as previously)

sin sin
sin sin

2 2

mg mg
mx mg mg

f fl f f     
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Notice that there is another force of constraint (the normal force :                            ).  

How can we get it?

Hoop Rolling Down an Incline Plane

sin

2x

g mg
Q

x

fl 
 



The magnitude of the force of constraint corresponding to the x-EOM 

is given by:

By the way, we can also get the EOM for the  variable,

cosNF mg f

sin

2
sin

2

mg
mR

g

R

f l

f

   






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We could get that out by introducing another “improper” coordinate y that permits 

motion normal to the incline plane and imposing the constraint y=0.



Mass Rolling off from a Hemispheric Surface

Problem: A point mass sits on top of a smooth 

fixed hemisphere with radius a.  Find the force 

of constraint and the angle at which it flies off 

the sphere.

( , ) 0g r r a   

0U ra 

Use coordinates:                   and constraint: and r 

cosU mgr 

 2 2 2 cos
2

m
L T U r r mgr     

 2 2 2 21

2 2

m
T mv r r     ˆˆnote: r r v r θ g

r
l l




0
gl






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Inserting constraint:                                         , we have 

Mass Rolling off from a Hemispheric Surface

 and 0r a r r   

r

  2

2

0

cos 0

cos (1)

d L L g

dt r r r

d
mr mr mg

dt

mr mr mg

l

  l

  l

          

   

  









 2

2

0

sin 0

2 sin 0

2 sin 0 (2)

d L L g

dt

d
mr mgr

dt

mr mrr mgr

r r g

l
  

 

  

  

          

 

  

  





 
 

2 cos (1')ma mg  l   sin 0

sin (2 ')

a g

g

a

 

 

 







 2 2 2 cos
2

m
L r r mgr   
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NOTE: To find force of constraint, insert constraint conditions AFTER you have 
gotten the E-L equation (with the multiplier) already.



Note that 

Mass Rolling off from a Hemispheric Surface

 2 2
d

dt
  

 

 

2

2

( ) 2 2
2 sin

2
( ) c

cos

os

sin
d g g g

dt

d

dta a a

g
d d

a






 



    


 




 





Substituting       from Eq (2’) into the above equation, we have,  

Integrating both sides, we arrive at the EOM for  ,

 

2

2

2
cos

2
1 cos

g
C

a
g

a

 

 

  

 





C is an integration constant.  Assuming 

initial condition with                              , we 

have

(0) (0) 0  

2C g a


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a
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Plugging the last expression into Eq (1’), we have 

Mass Rolling off from a Hemispheric Surface

The particle flies off when the constraint force = 0.  By setting l =0, we have 

the condition,

(This gives the mag of the constraint force.)

m a
2g

a
 1 cos cos

2 2 cos cos

mg

mg mg mg

  l

  l

 
   

 
   

(3cos 2)mgl  

 1

(3cos 2) 0

cos 2 3 48.2

c

c

mg 

 

 

 

2 cos (1')ma mg  l  
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